字体【

人工智能自学 如何自学人工智能

分类:家居生活日期:2024-02-14 22:49:31人气:


当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。

首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。

一、人工智能是什么?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。

人工智能

你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

选择相关的带着目的地去进行学习,这样是最有效率的。

好了,接下来由我来分享几个有关学习人工智能的网站

网站一:美国人工智能协会(网址:)

美国人工智能协会官网

作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。

网站二:智能代理家园(Agentland网址:)

智能代理家园(官网

智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。

好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。

学习AI的大致步骤:

(1)了解人工智能的一些背景知识;

(2)补充数学或编程知识;

(3)熟悉机器学习工具库;

(4)系统的学习AI知识;

(5)动手去做一些AI应用;

1了解人工智能的背景知识

人工智能里面的概念很多,比如机器学习、深度学习、神经网络等等,使得初学者觉得人工智能很神秘,难以理解。刚开始学习的时候,知道这些名词大致的意思就行了,不用太深究,学习过一段时间,自然也就清楚这些概念具体代表什么了。

人工智能是交叉学科,其中数学和计算机编程是学习人工智能最重要的两个方面。这些在“知云AI专栏”之前的文章“认识人工智能”,也为大家介绍过,没阅读过的同学可以去看一下。

下图为人工智能学习的一般路线:

2补充数学或编程知识

对于已经毕业的工程师来说,在系统学习AI之前,一般要补充一些数学或者编程方面的知识。如果你的数学和编程比较好,那么学习人工智能会轻松很多。

很多同学一提到数学就害怕,不过,学习人工智能,数学可以说是绕不过去的。在入门的阶段并不需要太高深的数学,主要是高等数学、线性代数和概率论,也就是说,大一大二学的数学知识已经是完全够用了。如果想要从事机器学习工程师的工作,或者搞人工智能的研究,那么应该多去学习数学知识,数学好将会是工作中的一大优势。

Python是在机器学习领域非常受欢迎,可以说是使用最多的一门编程语言,因此Python编程也是需要掌握的。在众多的编程语言中,Python是比较容易学习和使用的编程语言,学好Python也会受益很多。

3熟悉机器学习工具库

现在人们实现人工智能,主要是基于一些机器学习的工具库的,比如TensorFlow、PyTorch等等。

在这里推荐大家学习PyTorch。PyTorch非常的受欢迎,是容易使用的机器学习工具库,有人这样评价PyTorch“也说不出来怎么好,但是使用起来就是很舒服”。

刚开始学习人工智能的时候,可以先运行一下工具库官网的示例,比如MNIST手写体识别等。这样会对人工智能有一个感性的认识,消除最初的陌生感。然后可以看看里面的代码,你会发现,其实神经网络的程序并不复杂,但是会对神经网络的原理和训练有很多的疑问。这是一件好事,因为带着问题去学习,会更有成效。

4系统的学习人工智能

这里的人工智能主要指机器学习,因为目前人工智能主要是通过机器学习的方式来实现的。

机器学习知识主要有三大块:

(1)传统机器学习算法,比如决策树、随机森林、SVM等,这些称作是传统机器学习算法,是相对于深度学习而言的。

(2)深度学习,指的就是深度神经网络,可以说是目前最重要最核心的人工智能知识。

(3)强化学习,源于控制论,有时候也翻译成增强学习。深度学习可以和强化学习相结合使用,形成深度强化学习。

在这里需要知道的是深度学习并不难学,对于一些工科的研究生,一般只需要几周就可以上手,并可以训练一些实际应用中的神经网络。但是想要对深入学习有深入理解不是容易的事情,一般需要几个月的时间。

传统机器学习算法的种类非常多,有些算法会有非常多的数学公式,比如SVM等。这些算法并不好学,因此可以先学习深度学习,然后再慢慢的补充这些传统算法。

强化学习是比较有难度的,一般需要持续学习两三个月,才能有所领悟。

5动手去做一些AI应用

学习过几周的深度学习之后,就可以动手尝试去做一些AI应用了,比如图像识别,风格迁移,文本诗词生成等等。边实践边学习效果会好很多,也会逐渐的加深对神经网络的理解。

本文永久网址: